Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors.

نویسندگان

  • Peng Zhang
  • Bu Yuan Guan
  • Le Yu
  • Xiong Wen David Lou
چکیده

Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g-1 at 1 A g-1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon dioxide sensitivity of zeolitic imidazolate frameworks.

Zeolitic imidazolate frameworks of zinc, cobalt, and cadmium, including the framework ZIF-8 commercially sold as Basolite Z1200, exhibit surprising sensitivity to carbon dioxide under mild conditions. The frameworks chemically react with CO2 in the presence of moisture or liquid water to form carbonates. This effect, which has been previously not reported in metal-organic framework chemistry, p...

متن کامل

Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks.

Sodalite zeolitic imidazolate frameworks containing Co (ZIF-67) and Zn (ZIF-8) were synthesized at room temperature under aqueous conditions in 10 min. A trialkylamine deprotonated the 2-methylimidazole ligand and nucleated the frameworks. Furthermore, the ligand acted as a structure directing agent in place of an organic solvent.

متن کامل

Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks.

We report three design principles for obtaining extra-large pore openings and cages in the metal-organic analogues of inorganic zeolites, zeolitic imidazolate frameworks (ZIFs). Accordingly, we prepared a series of 15 ZIFs, members of which have the largest pore opening (22.5 Å) and the largest cage size (45.8 Å) known for all porous tetrahedral structures. The key parameter allowing us to acce...

متن کامل

A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks.

To realize the various functionalities and maximize the structural advantages, hollow particles with multiple compositions and complex structures are highly desirable. However, the development of a convenient and scalable method for the synthesis of such multi-compositionally complex hollow structures remains a big challenge. Herein, we report an efficient and universal strategy to fabricate a ...

متن کامل

Polyhedral metal-imidazolate cages: control of self-assembly and cage to cage transformation.

A series of neutral cubic nickel(II)-imidazolate Ni8L12X4 cages were prepared by rational choices of substituents and anions with solvothermal subcomponent self-assembly technology. Both substituents and halide anions play a critical role in the formation and stabilization of cubic cages. Changing one of the factors in the reaction will switch the final structure to a Ni14L24 rhombic dodecahedr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 56 25  شماره 

صفحات  -

تاریخ انتشار 2017